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This paper describes a detailed experimental study of turbulent boundary-layer 
development over rough walls in both zero and adverse pressure gradients. In  
contrast to previous work on this problem the skin friction was determined by 
pressure tapping the roughness elements and measuring their form drag. 

Two wall roughness geometries were chosen each giving a different law of 
behaviour; they were selected on the basis of their reported behaviour in pipe 
flow experiments. One type gives a Clauser type roughness function which 
depends on a Reynolds number based on the shear velocity and on a length 
associated with the size of the roughness. The other type of roughness (typified 
by a smooth wall containing a pattern of narrow cavities) has been tested in pipes 
and it is shown here that these pipe results indicate that the corresponding 
roughness function does not depend on roughness scale but depends instead on 
the pipe diameter. In  boundary-layer flow the first type of roughness gives a 
roughness function identical to pipe flow as given by Clauser and verified by 
Hama and Perry & Joubert. The emphasis of this work is on the second type of 
roughness in boundary-layer flow. No external length scale associated with the 
boundary layer that is analogous to pipe diameter has been found, except perhaps 
for the zero pressure gradient case. However, it has been found that results for 
both types of roughness correlate with a Reynolds number based on the wall shear 
velocity and on the distance below the crests of the elements from where the 
logarithmic distribution of velocity is measured. One important implication of 
this is that a zero pressure gradient boundary layer with a cavity type rough 
wall conforms to Rotta’s condition of precise self preserving flow. Some other 
implications of this are also discussed. 

Two types of roughness 1. Introduction 

The framework of rough-wall flow analysis was established by Nikuradse (1  933) 
who investigated flow in sand-roughened pipes. He found that with increasing 
Reynolds number the flow behaviour deviated from the turbulent smooth-wall 
law and depended on the relative scale of the roughness k/d (k is roughness scale 
and d pipe diameter) as well as the Reynolds number. At higher Reynolds number 
the flow becomes independent of viscosity and is a function of kid alone as shown 
in figure 1. Plow dependent on kid alone was termed ‘fully rough’ while flow 
dependent on both k/d and Reynolds number was termed transition flow. 
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Another important result of Nikuradse was that the smooth-wall velocity defect 
law applied to the bulk of the flow irrespective of the scale (k) of the roughness. 
The effect of roughness on the velocity profile shape was thus, like viscosity (v), 
confined to a thin wall layer. Perry & Joubert (1963) therefore proposed to 
account for the effect of roughness on the bulk of the flow by simply using a 
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FIQVRE 1. Nikuradse’s (1933) pipe results. ‘k’ type roughness. 
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modified fluid viscosity v,. The form of the logarithmic velocity distribution for 
flow over rough walls given by Clauser (1954), 

u 1  Au ku f 

u, K 
- = -log, (y) + A  -& [$I, 

(where u, = J(ro/p), ro being the wall shear stress and p the fluid density, 
(Aulu,) [ku,/v] the roughness function which is zero for smooth walls and K ,  A are 
universal constants) can then be written simply as 

where 

u 1  
- = -log, (y) +A, 
u, K 

- V = exp ( K  $ [+I) 
Ve 

and it follows that v,/v = 1 for smooth walls. Hama (1954) showed from the 
results of an extensive experimental programme that (1) and the Clauser form 
of the roughness function for fully rough flow, 

Au 1 ku, - = -log, ( y  ) + constant, 
u, K 

(3) 

are both universal for a given roughness geometry in pipe, channel and zero 
pressure gradient boundary-layer flow. Perry & Joubert (1963) showed that the 

t Throughout this paper square brackets will denote a functional dependence. 
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universality extends to boundary-layer flow in adverse pressure gradients. It 
should therefore be possible to determine the roughness function for boundary- 
layer flow from a simple pipe test. A convenient method of doing this is illustrated 
in figure 1 where Nikuradse’s pipe results are shown on axes friction factor (f) 
versus log Reynolds number (R). In  this paper f is defined by 4(8/f) = ubluT, 
where ub is the bulk mean velocity given by 
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FIGURE 2. Flow in pipes with depression or groove type roughness ( ‘d ’  type roughness). 
Values of relative roughness (k/d) for results shown: a, 0.0125; b, 0.0185; c, 0.0204; d, 
0.0112; e, 0.0056; f, 0.0162; g, 0.0337. -*-, Sams (1952); --, Streeter & Chu (1949); 
_ _ _ _  , Ambrose (1954). 

and A is the flow area; the Reynolds number here is U,d/v. Also shown on figure 1 
are curves for turbulent ‘ smooth wall ’ flow for various modified fluid viscosities 
(vJv + 1). From (2) the rough-wall velocity profiles can be collapsed onto the 
smooth-wall results by replacing v by ve. It follows therefore that a rough-wall 
friction factor versus Reynolds number curve for constant ve is identical to the 
smooth-wall curve with v replaced by v, in the Reynolds number. Hence the 
curves of constant ve/v on figure 1 are simply the smooth-wall friction factor 
graph shifted bodily sideways by logv,/v. Equation (2) shows that these curves 
are also contours of Aulu,. By plotting experimental data on this chart it is there- 
fore possible to read off the appropriate value of Aulu, and to calculate the 
product (R) (Jf) ( k / d )  which is proportional to ku,/v. The resulting graph of 
Aulu, versus kuJv will be universal for a given roughness geometry and will give 
the relationship for both the transition and fully rough regimes in terms of 
variables required for boundary-layer analysis. 

25 Fluid Mech. 37 
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The above method of pipe to boundary-layer correlation is valid provided the 
roughness behaviour follows the usual Clauser or Nikuradse scheme. However, 
Streeter & Chu (1949) and Ambrose (1956) have reported examples of roughness 
whose friction factor-Reynolds number characteristics are insensitive to the 
relative scale kld. This type of roughness is characterized by a smooth surface 
with a series of depressions or grooves within which the outer flow generates 
stable vortices. Their results are shown in figure 2. In  this case as will be shown 
later, vJv and hence AuIu, is a function of the product R Jf alone which is pro- 
portional to du,/v. The resulting roughness function graph (for a given geometry) 
is a single curve as before, but with an abscissa of du,/v instead of ku,Iv. As the 
length scale ( d )  used to describe the roughness function is associated with the 
outer flow this result appears to be inconsistent with Prandtl’s ‘law of the wall’ 
developed by Nikuradse (1933) and Clauser (1954) for rough walls. Also for appli- 
cation to boundary-layer flow the curve obtained for the roughness function is of 
little use as pipe diameter has no obvious equivalent in boundary layers. For the 
special case of an equilibrium boundary layer the results may possibly correlate 
with 6, the boundary-layer thickness, but such a correlation seems most unlikely 
for the arbitrary pressure gradient case. In  this paper these two types of rough- 
ness action will be termed ‘k’ type and ‘ d ’  type, the symbols denoting the 
significant length scale involved. 

Measurement of wall shear stress on rough walls 
A major experimental difficulty in studying rough-wall boundary layers in non- 
zero pressure gradients is to measure the local wall shear stress accurately. 
Smooth-wall techniques such as Preston or Stanton tubes require a knowledge of 
the roughness function to give an answer. Momentum integral methods, though 
useful for zero pressure gradient boundary layers, become highly inaccurate when 
applied to boundary-layer development in pressure gradients. Another possi- 
bility is the graphical method introduced by Clauser (1954) for finding wall shear 
stress of smooth-wall boundary layers. The Clauser method determines the local 
skin-friction coefficient by plotting the mean velocity profile on axes u/Ul versus 
log,, (yU,/v), where 77, is the local free-stream velocity. The logarithmic distribu- 
tion of velocity near the wall appears as a straight line on these axes and it is the 
position and slope of this line that determines the local skin-friction coefficient. 
However, boundary layers on rough walls introduce two additional variables to 
the plot. 

First, there is the roughness function Aulu, which shifts the logarithmic 
portion of the mean velocity profile on the plot away from the position of the 
corresponding smooth-wall profile, as given by (1). As the determination of 
AuIu, is one of the aims of roughness research, the amount the profile is shifted 
on the Clauser plot is unknown. 

Secondly, Moore (1951) showed that a boundary layer on a rough wall behaves 
as if its origin is located some distance ( E )  below the crests of the elements. The 
distance E ,  which will be referred to as the error in origin, defines an origin for the 
profiles that will give the logarithmic distribution of velocity near the wall. The 
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error in origin can be considered as a measure of the interaction between the mean 
flow and the roughness. As such it seems that e should be related to the roughness 
function. To the authors’ knowledge no such relation has been published. 

Due to these two additional variables (Aulu,, e) Clauser’s method for finding 
the wall shear stress becomes imprecise as it is found that a large range of possible 
combinations of the wall parameters (T,,, Au/u,, e) will give nearly straight lines 
on the Clauser plot and any of them could be interpreted as the correct logarithmic 
distribution. Perry & Joubert studied the case of rough-wall boundary layers in 
adverse pressure gradients, finding the wall parameters by an extension of the 
Clauser plot which employed the properties of the wake function (Coles 1956). 
The method was not entirely satisfactory as the wake function is not truly 
universal at  the outer edge of the boundary layer. As a means of finding the wall 
shear stress on a rough-wall boundary layer the Clauser method is therefore of 
limited use. However, if the wall shear stress is known by some other method the 
Clauser plot affords a fairly accurate means of determining the two other wall 
variables 8 and Au/u,. This approach was used in the present work. 

Aims 

The aims of this work are: (i) to determine whether the roughness function 
AuIu,, for a eero pressure gradient boundary-layer flow on a ‘ d  ’ type rough wall 
is a function of (6u,/v) alone; (ii) to determine a correlating length scale for Au/u, 
in an arbitrary pressure gradient boundary-layer flow on a ‘ d ’  type rough wall; 
(iii) to determine the relationship of Aulu, to the error in origin of the logarithmic 
velocity profiles (8); (iv) to develop a method of measuring local wall shear stress 
on rough walls which avoids the use of the momentum integral equation and 
assumptions concerned with velocity profile similarity laws. 

2. ‘d’ type roughness Previous work 

Published evidence of ‘ d ’  type roughness behaviour is limited to pipe flow. 
Sams (1952) considered flow in two pipes that had been roughened by cutting 

square threads on their internal surfaces. The two thread forms were approxi- 
mately similar differing in scale by 50 %. However, the published photographs 
show that the form of the threads was not accurately controlled and this is 
reflected in the results which show considerable scatter. The mean curves fitted 
to the results (see figure 2) do show a distinct trend that is opposite to that of the 
Nikuradse curves; the results for the larger relative roughness scale (Icld) having 
the lower friction factors (f). 

Streeter & Chu (1949) also investigated flow in three pipes with square- 
threaded internal roughness. The accuracy of the thread form cannot be assessed 
from the report but the results show little scatter. In  this case a variation by a 
factor of nearly 4 in the relative roughness scale resulted in a friction factor 
change of approximately 5 %. An equivalent change of relative roughness in 
Nikuradse’s sand grain geometry would give a friction factor change of approxi- 
mately 25 yo. The trend of the results did, however, agree with that of Nikuradse’s 

25-2 
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results. In  this work cursory velocity profiles (involving only thirteen measuring 
points per profile) were taken. 

Ambrose (1956) reported a detailed investigation of flow in pipes fitted with 
liners in which a regular pattern of circular holes had been drilled. The friction 
factor was determined by the pressure-drop method and detailed velocity 
traverses were taken. Unfortunately only two pipe liners having the same 
roughness pattern but different relative scales were tested. The results (figure 2 )  
show that initial transition from smooth-wall flow was dependent on the scale of 
the roughness. At higher Reynolds numbers the results for the two scales of 
roughness are identical, but as they do not fall on a horizontal straight line they 
are not viscosity independent. Ambrose (1954) considered that this higher 
Reynolds number behaviour indicated a type of roughness action that did not 
become viscosity independent. However, as his results all lie within the limits for 
transitional flow suggested by Colebrook & White (1937), shown as the shaded 
region in figure 2 ,  it is possible that viscosity independent flow is delayed until 
very high Reynolds numbers for this particular roughness geometry. 

Implication of results 

The results of Ambrose and Streeter & Chu can be used to show the functional 
dependence of the roughness on the pipe diameter which was indica,ted in the 
introduction. 

Near the wall of the pipe these results show that the mean velocity profiles 
follow the logarithmic distribution and the outer flow follows the usual velocity 
defect law. Hence, the whole flow beyond a thin sublayer can be expressed as 

u 1  

u, K 
(4) 

where h is a deviation function introduced by Millikan (1938) to describe that 
part of the velocity profile which departs from the logarithmic law in the core 
region of the pipe. The function h[2y/d] is zero if 2yld < 6,  where is of the order 
of 0.2. At y = Sd; (a, = U,) (4) becomes 

1 du7 Au 3 = -log, (%) + A - - + h ( l ) .  
U.7 K 2% 

By subtracting (4) from ( 5 )  the velocity defect form is obtained 

u1-u 1 
u, = --log, K (%) + h ( l ) - h ( $ )  

and integration of this equation over the flow area (see Perry 1964), gives 

-- "-"- ? + h ( l ) + q ,  
U ,  2 K  

where q is a constant. Substitution of ( 5 )  into (6) gives an expression for the 
roughness function : 

Y 

v, q - - .  
u, K u, 
Au - = -log, 1 (%) du, + A  -2K- 3 (7 )  
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If  the friction factor (f) and hence UJu,  is not a function of k/d and depends on 
Reynolds number ( & d / v )  alone, then &/u7 will be a unique function of du,/v. 
Equation (7)  can then be written as 

A substitution of the smooth wall condition (Aulu, = 0) into (7) gives 

which has previously been derived by one of us (Perry 1964). At sufficiently high 
Reynolds numbers, ub/u, is constant and (5) then becomes 

Au - = - 1 log, ( du7 y )  + G ,  
u, K 

where G is a constant for a given roughness and duct geometry.? Equation (8) 
has the same form as (3) but k is replaced by d. 

The two facts, first, that the external length scale d appears in the equation for 
the roughness function and second, that the velocity distribution near the wall 
is logarithmic, lead to a partial understanding of how the parameter ‘ d  ’ affects 
the flow. The mean flow near the wall may be expressed as 

To obtain the observed logarithmic distribution by a dimensional argument, it 
is necessary to  assume that in a region above the roughness, mean relative 
motions are independent of length scales associated with the behaviour of flow 
at the boundary. Furthermore, ‘ d ’  must be classed with vlu, as a boundary- 
length scale and hence 

- = 4*[y,u7 alone] a@ 
aY 

and by dimensional analysis 
au 1 - = -  
?!I KY’ 

Integration of (10 )  gives 
u 1  
- = -log, ( y )  + constant 
u, K 

A comparison of (9) and ( 1  1 )  leads to 

- u 1  = -logc(?) +A--- [ - ] .  Au du ,  
UT K 

Beyond the region of the law of the wall, d will have an influence not only on the 
boundary condition for (1 1 )  but will also control the mean relative motions. The 

t This analysis is for a circular pipe but could probably be extended to non-circular 
ducts. To do this the variation of wall shear stress around the periphery of a non-circular 
duct would have to be taken into account (see Perry 1964). 
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velocity distribution must then include Millikan’s deviation function h[Zy/d] as 
given in (4). The influence of ‘ d ’ at the boundary of the flow is examined further 
in the next section. 

3. Proposed structure of ‘k’ and ‘d’ type rough-wall flow 
Pipe flow 

Only fully rough flow is considered with figures 3 and 4 defining the variables used. 
For simplicity the following work is restricted to two-dimensional strip roughness. 

Lateral length of roughness 

FIGURE 3. ‘k’ type roughness. 

asymptote law asymptote law 
FIGURE 4. ‘ d ’  t y p e  roughness. 

In the case of ‘k’ type roughness (figure 3), eddies with a length scale propor- 
tional to ‘ k’ are assumed to be shed into the flow above the crests of the elements. 
Further away from the crests, this roughness sublayer structure blends smoothly 
into the flow which is described by the velocity defect law. It is then assumed that 
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this inner flow has a characteristic velocity scale u, and a single length scale k 
and hence 

The outer flow is described by (4) which for 2yld < can be written as 

but will be valid only if the two regions blend along a line that has no periodic 
disturbances of wavelength A. That is, (14) is valid only if the constant a is 
‘sufficiently large’. At yT = ak, u/uT = u,lu, = p by (13), where /3 is constant. 
The parameter u,/ur will be referred to as the ‘surface drag coefficient’ and is 
analogous to the non-dimensional velocity a t  the outer edge of the viscous sub- 
layer for flow over a smooth surface. In  the smooth wall case y = avIu, at the 
outer edge of the viscous sublayer and hence vlu, is analogous to k for ‘k’ type 
rough wall flow. 

Equating the velocities given by the inner and outer flow (at yT = ak)  leads to 

where P is constant. A comparison of velocity gradients given by (13) and (14) 
shows that e is proportional to k which puts (15) into the form of (3). Alternatively 
(15) could be written as 

where c k  is a constant, characteristic of the roughness. 
On a ‘ d ’  type rough wall the elements are more closely spaced and stable 

vortices are set up in the grooves and eddy shedding from the elements into the 
flow will be negligible. The outer flow rides relatively undisturbed over the crests 
of the elements and the distance ak in figure 3 and equation (15)’ approaches zero. 
It has been found experimentally (see $5) that for the case of ‘ d  ’ type rough walls, 
the drag on the roughness elements is extremely sensitive to vertical misalign- 
ment of the element crests.? It is plausible that an effect similar to that produced 
by vertical misalignment occurs if the instantaneous direction of the streamlines 
above the grooves are changed by the large-scale vertical components of velocity 
impressed from the outer flow. In  this case a length scale associated with these 
outer flow motions will govern the flow at the boundary. 

If a ‘a ’  type rough surface has a constant ‘surface drag coefficient’ u,luT (as in 
smooth and ‘k’ type rough wall flow), it follows directly from (15) that for ak 
negligibly small 

(17) 

where C, is a constant, characteristic of the roughness. The procedure followed in 
the ‘k’ type analysis could not be followed in this case because even if (13) was 

t In this and subsequent contexts ‘vertical’ means ‘in a direction normal to the surface 
of the main plate’. 
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valid within the grooves (i.e. for negative yr) ,  as d governs the flow near the 
crests the velocity gradients given by (13) and (14) cannot be equated. In  the 
‘ k’ analysis equating velocity gradients gave the result that e was proportional 
to k. The apparent independence of E with k for ‘d  ’ type rough wall flow implies 
that characteristic velocity gradients within the grooves (given by u,/k _N u,/k) 
are not related to gradients of velocity given by the outer flow relations above 
the crests. Results in $ 5  show that C, (and hence u,/u,) is universal for a given 
roughness geometry even for boundary layers developing in strong arbitrary 
adverse pressure gradients. 

For a general flow situation 6 cannot be predicted a t  the present state of 
knowledge. However, for the particular case of pipe flow it appears that e is 
proportional to the pipe diameter, d (from a comparison of (8) and (17)). This 
proportionality is consistent with the idea that the large-scale motions from the 
outer flow have an influence at  the surface since, by Townsend’s (1956) Reynolds 
number similarity hypothesis, these large-scale motions have characteristic 
velocity and length scales of u, and d. They could probably be described as the 
inactive components of the flow (Townsend 1961) since they appear to penetrate 
through the logarithmic region without affecting it except by their influence on 
the roughness function. 

Boundary-layer $ow on a ‘ d ’ type rough wall 

In the case of boundary-layer flow no obvious equivalent to ‘ d ’  exists and there 
are many external measurable length scales that could influence e. This is especi- 
ally true in the case of boundary layers developing in arbitrary pressure gradients. 
However, for the particular case of equilibrium boundary layers all large-scale 
motions should scale approximately to one local length scale and one local 
velocity scale. One important case of equilibrium layers is the zero pressure 
gradient layer and here it is well established that mean relative motions scale 
according to a boundary-layer thickness (Sor Clauser’s (1954) thickness A,defined 
on an integral basis) and the local wall shear velocity u,, as given by the velocity 
defect law (Hama 1954). There is also evidence, although it is not conclusive, that 
the distributions of the r.m.s. values of the fluctuating velocity components if 
scaled with S and u, are universal for both smooth and rough walls. This was a 
conclusion of Hinze (1959) after comparing the rough wall data of Corrison & 
Kistler (1954) with the smooth wall data of Klebanoff (1955). If this type of 
similarity exists for mean and fluctuating components in the case considered here 
then e should be proportional to S. Equation (17) would then be written as 

- A u  = -log, 1 (T) 8% +D, 
u, K 

where D is a constant, characteristic of the roughness geometry and of zero pres- 
sure gradient boundary layers. This assumption has interesting consequences. 
(i) The equivalent expression of (4) for a boundary layer is 

- u 1  = -loge($) + A - - - + g [ : ] ,  Au 

u, K u, 
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where g[y/S] is the corresponding deviation function which is invariant €or the 
zero pressure gradient case. Substituting (18) in the last equation gives 

- u 1  = -log,($+g[;]-D+A. 

U.7 K 

At y = 6, u = U, and hence Ul/u7 = g[  11 - D + A .  Hence the local skin friction is 
constant for the layer. Also, (19) can be written as u/U, = @[y/S] where @ is a 
universal function and it then follows that the momentum thickness (O), dis- 
placement thickness (S”), 99 yo thickness (6)  and Clauser’s (1954) thickness (Ac) 
are all proportional to each other. These facts have several corollaries. (ii) From 
the von K&rm&n momentum integral equation for a zero pressure gradient layer 
it follows for this particular layer that 0 is proportional to the development 
length x and hence 6, 6*, A, are also proportional to x. (iii) The assumption that 
6 is proportional to 6 now also implies that it is proportional to x, 6*, 19, and A,. 
(iv) Rotta (1962) noted that the exact theoretical dependence of the velocity 
defect law is (U, - u)/u7 = @,[y/S, u7/UJ but that experimental results indicate 
that the effect of u7/Ul is a weak one. He then examined the theoretical conditions 
to be fulfilled to obtain an exact ‘self-preserving’ or ‘equilibrium’ layer and 
found that both the Clauser (1954) equilibrium parameter (&*/~,,)/(@/dx) and 
uJU, must be held constant. Thus although any zero pressure gradient boundary 
layer will have a constant Clauser equilibrium parameter (as @/dx = 0) the flow 
will only be approximately self-preserving unless u7/Ul is also constant. Rotta 
suggests as an example of exact self-preserving flow, a zero pressure gradient 
boundary layer on a ‘k’ type rough wall in which the height of the roughness 
elements varies with x such that u7/Ul is constant. No experimental results of 
such a layer have been reported. 

The boundary layer considered here conforms theoretically to Rotta’s condi- 
tion for exact self-preserving flow. 

4. Description of experiment 
Wind tunnel 

The tests were performed in a large wind tunnel of the return circuit closed 
working section type with a turbulence intensity in the working section of 0.3 yo. 
The fan speed was controlled to within 0.1 yo of the selected value. 

A long flat plate was installed in the working section which had the same 
structural details as shown in Perry (1966, figure 1). The plate spanned the full 
height of the tunnel and was mounted such that its angle of attack could be varied 
through a wide range. Felt seals between the edges of the plate and the tunnel 
isolated the flow on each side of the plate. For strong adverse pressure gradient 
tests a blister was constructed on the tunnel wall opposite the trailing edge of the 
plate to prevent flow separation. A standard Prandtl tube placed near the leading 
edge of the plate gave a reference dynamic head that was maintained within 4 % 
of the selected value throughout each series of runs. 
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Roughness 

A two-dimensional roughness pattern was used. There were three sizes of rough- 
ness which had nominal heights of *in., Qin. and 1 in. The &in. roughness was 
machined out of a rolled aluminium plate (loft. long by 3ft. wide) that was 
clamped to the main plate. Corner fillets were fitted to prevent corner vortices 
from forming. The ends of each groove were sealed to isolate the flow in each 
groove. 

Nominal 
Plate height o f  

construction elements 

Aluminium +in. 
(D 111 Series) 

Timber 8 in. 
( D  11 Series) 

1 in. 
( D I  Series) 

Mean 
Standard 

Mean 
Standard 

Mean 
Standard 

deviation 

deviation 

deviation 

k 
in. 

0.123 
1.9 x 10-3 

0.498 
3.6 x 10-3 

0.991 
4.7 x 10-3 

b 
in. 

0.990 
8.3 x 10-4 

0.879 
6.61 x 10-3 

W L 
in. in. 

0.112 36 
8 . 0 ~  lo4 - 

0.934 47 
1 . 5 4 ~  - 

TABLE 1 

The nominally in. and 1 in. scale roughness elements were made from accu- 
rately machined timber which were glued to the main plate. The t in .  elements 
were graded along the plate, the leading element being the lowest and the trailing 
element the highest. The 1 in. elements were not so graded. A number of random 
measurements of the salient features of the roughness geometry (k, b, W )  were 
taken on both the wooden and aluminium plates. Values of the mean and 
standard deviations of the distribution of these quantities are given in table 1. 

Maul1 & East (1963) reported three-dimensional flow behaviour in a large 
single groove under a thin boundary layer for kl W outside the range 

0.875 < k/W < 1.2. 

Kistler & Tan (1967) also found cellular flow in a similar experimental situation 
for k/W < 2.5. In  the present work klW had a nominal value of 1.11. As it was 
important that two-dimensional flow patterns existed in the wall slots, extensive 
flow visualization tests were performed on the flow in the cavities. The tests, 
involving dye streaks, tufting the cavity walls, smoke and tufted probes did not 
reveal any cellular flow patterns across the plate. 

For all scales of roughness the plate was fitted with a smooth leading edge, 
shown in the inset of figure 3. The crest of the first element was at  the same level 
as the leading edge to prevent a local separation bubble. 

Procedure 
Twelve of the wooden roughness elements spaced along the plate were made 
removable so that an element fitted with pressure-tapped pads could be inserted 
into the roughness pattern. The pressure-tapped pads (shown in figure 5) were 
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made of brass tubes soldered together and drilled at  varying distances up the 
height of the element. A pair of corresponding tubes from each side of the element 
was connected in turn to a Chattock manometer enabling the pressure difference 
profile across the element to be measured to an accuracy of & 0.0003 inches of 
water. The elements of the aluminium plate were not pressure tapped. 

soldered together 
A d  ' To manometers I"-L=l To 

manometers 

Final surface flat and 
flush with timber Pressure pad 

FIGURE 5. Diagram of pressure-tapped roughness element. 

At these twelve stations mean velocity profiles were taken on the plate centre 
line using the automatic traversing and plotting system developed by one of us 
(Perry 1966). The system was periodically compared with a standard Prandtl 
tube and Betz manometer system and the errors were always less than 1 yo. The 
repeatability of the profiles were to the same accuracy. 

Three of the tests were in strong adverse pressure gradients. These pressure 
gradients were measured in great detail (approximately 80 readings were taken 
for each gradient) with a special probe on a longitudinal traverse. ,The probe 
consisted of two tubes soldered together and mounted on a long sting to remove 
it from the pressure field of the traverse. 

Each tube was drilled with a static pressure hole and the holes in the two tubes 
were spaced 1-80in. apart. This distance corresponds to nh where n = 1 for 
k = 1 in. and n = 2 for k = +in. With the probe positioned about 0.88 away 
from the wall the pressure difference between the two holes was read on a 
Chattock manometer. The small errors due to the distortion around the probe 
and sting were measured, and allowed for. The pressure at  each hole of the probe 
was compared at  the same streamwise position with a static stream tube fixed to 
the plate. The stream tube was repositioned along the plate for each major 
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repositioning of the pressure gradient probe traversing system. Nominally zero 
pressure gradients were checked at twelve positions along the plate with standard 
Prandtl tubes and a Betz manometer. 

The flow over the rough surface was investigated visually using a tufted probe, 
dye streaks and smoke. For all plate settings the flow was found to be steady, 
attached and two-dimensional across the complete width of the roughened plate. 
Mean velocity profiles taken above and below the centre line of the plate agreed 
with the centre-line profile within the accuracy of the recording system. 

Profiles taken at a fixed position but with tunnel speeds varying from 67 ft./sec 
to 106ft./sec also agreed within the accuracy of the recording system. 

5. Results 
Determination of wall shear stress 

The wall shear stress for the boundary layers over the 1 in. and &in. timber 
roughness elements was evaluated by analyzing the control volume around a 
single element shown in figure 6. The effective average wall shear stress is 

0 
Flow 

-,I- 

- c 
/ 

FIGVRE 6. Control volume used to determine the effective wall shear stress. 

assumed to act along a surface H L: positioned a distance p above the crest of the 
elements, where /u is small compared with k. From the work of Roshko (1955) and 
Fox (1964) the shear on the cavity walls ABCDEF (figure 6) are assumed 
negligible compared with the pressure forces acting. Flow patterns in successive 
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showed up clearly in this test and appear flattened as shown in figure 10. The 
small separation bubble on the leading edge of the crest of the roughness element 
has been previously noted by Fox. 

Determination of Aulu, and E 

With a known value of skin-friction coefficient, the roughness function and the 
error in origin of the velocity profiles were determined using a modified Clauser 
plot as discussed in 3 2. 

Series DIZ-11 
station 4 0.9 

0.01 '0.05 0.10 0.5 1 
YT, (YT + E )  in. (log scale) 

FIGURE 11. Example of velocity profile reduction technique. 

5 

Near the wall (14) is valid and for K = 0-40 and A = 5-1-f can be written 

(22) 

where c;, is the local skin-friction coefficient. It is shown by Perry & Joubert 
(1963) that Au/u, is then given by 

where P is the value of u/U, given by (22) for yT = 1 in. To find B and Aulu, the 
raw velocity profiles were first plotted on axes u/U, versus log,, yT as shown in 
figure 11. The required slope of the final logarithmic distribution (5.76 J&$, by 
(22)) was then calculated using the value for the local skin-friction coefficient 
that had been previously determined by the pressure-tapped roughness element 

tions (22) and (23). 
t Perry & Joubert used K = 0.41, A = 4.9 giving slightly different constants in equn- 
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FIGURE 7. Effect of vertical misalignment of the crest of the pressure-tapped roughness 
element on the pressure difference profile. ' d '  type roughness. 
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the roughness elements (Ic) but some profiles were taken near the leading edge 
of the plate where the boundary layers were relatively thin. 

Pressure difference profiles are shown in figure 7 where (P2(y)-P,(y)) is 
plotted against pb/k.  Profiles of (pZ(y) -p3(y))/ro versus yb/k are not universal 
as the pressure gradient has an effect that cannot be accounted for by a simple 
subtraction. Unlike the analysis leading to (20), the problem here is to account 
for pressure gradient effects over a distance less than A. 

-0.020 
I 

Vertical 
misalignment 
I t 

0.010 0~020 
Ak (inches) 

- -100 

J -150 

FIGURE 8. Percentage error in skin-friction coefficient due to vertical misalignment of 
pressure-tapped roughness element. 0, strong adverse pressure gradient; 0 ,  zero pres- 
sure gradient. 

The variation of the measured C,, due to misalignment of the pressure-tapped 
element in the array was tested. The value of CB0 was found to be only moderately 
sensitive to longitudinal errors in position; a 1 yo error in the z-direction resulted 
in a 1 yo change in drag coefficient. However, vertical alignment of the crest of the 
pressure-tapped element with respect to the crests of the neighbouring elements 
was critical. The effect of a misalignment was to shift the curves bodily up and 
down as shown in figure 7. This shift depends on the degree of vertical misalign- 
ment and the nature of the pressure gradient. In figure 8 the percentage change 
in c;, is plotted against vertical misalignment of the crest of the pressure-tapped 
element in a zero and strong adverse pressure gradient. As only the 1 in. elements 
were used for the test it is not known whether the error in drag depends on the 
absolute value of the vertical misalignment or on the ratio of the misalignment 
to the size of the roughness. Kistler & Tan reported a similar result for a single 
cavity. In  a zero pressure gradient boundary layer they found that a 1 % rounding 
of the downstream edge of the cavity (the stagnation corner) caused a 10% 
change in cavity drag. As the crest alignment was held locally to 2 0-003 in. during 
measurements, possible errors in drag coefficient were small for the adverse 
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pressure gradient cases. The same tolerance on vertical alignment of the crests in a 
zero pressure gradient layer made the method unreliable with timber elements. A 
machined aluminium plate was therefore used to ensure that the element crests 
were aligned more accurately. However, since this plate could not be pressure 
tapped the momentum integral method was used to determine skin friction. 

I I I 1 I I 

0.6 

0 5  

0 4  
0 .. 
Y 
$ 0 3  

0 2  

0 1  

0 
0 4 6 8 10 12 14 16 18 

x (ft.) 

FIGURE 9. Typical skin-friction coefficient and free stream pressure coefficient distribution 
along the plate (strong adverse pressure gradient). 0, c;,,; 0, C,. 

The values thus determined for skin-friction coefficient were plotted against 
distance from the leading edge of the plate and a faired in curve was drawn. 
These faired in values were used in subsequent data reduction. A typical set 
of results for a test series is shown in figure 9. Figure 9 also shows the longitudinal 
free stream pressure variation for the same series of tests. 

Flow visualization 

The flow on the surface of the roughness geometry was qualitatively investigated 
using a weak suspension of titanium dioxide in kerosene. The suspension was 
painted onto a small area of the plate covering two or three consecutive wave- 
lengths of the roughness geometry. The wind tunnel was turned on immediately 
causing the suspension t o  move in the direction of the local airflow while the 
kerosene was being evaporated. When all the kerosene was evaporated streaks 
of titanium dioxide were left on the surfaces. As the plate was mounted vertically 
in the tunnel the suspension had an additional uniform velocity towards the floor 
of the tunnel. The orientation and angle of the final streaks thus gave an indica- 
tion of local surface flow direction and its relative speed. Sketches of a typical set 
of streak patterns are shown in figure 10 with the deduced flow pattern around 
the roughness geometry shown below them. Although the test was repeated at  
five positions over the full length of the plate, no substantial changes in the 
patterns were noted. The tests were performed at  one adverse pressure gradient 
setting of the plate only. 
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The areas on the sketches that are shaded represent positions of heavy titanian 
dioxide deposit where individual streaklines could not be discerned. Similarly, 
blank areas indicate positions of little to no titanium dioxide deposit. Prom the 
angles of the streaklines inferences can be made about the relative surface 
velocities around the cavities. The highest velocity is over the crest of the 
elements except for a small region near its leading edge where the flow appears to 
be separated. The main eddy within the cavity has a velocity of the order of 

.Trailing Bottom Leading Crest 
face face 

A B  C D E  F G  H J  

FIGURE 10. Surface flow patterns around ' d '  type roughness geometry. 

half that of the crest velocity. The velocities of the small eddies in the corners of 
the cavity appear to be an order less than that of the main eddy. The final sketch 
of the cavity flow differs only slightly from the descriptions given by Roshko 
(1955), Fox (1964) or Haughen & Dhanak (1966) for single cavities and the 
description given by Liu, Kline & Johnston (1966) for rough channel flow. How- 
ever, in the case considered here the stagnation streamline appears to penetrate 
the cavity further than in the papers cited above. This may be due to the external 
pressure gradient that was absent in the previous studies. The small 'roller' 
vortices in the corners of the cavity, that were conjectured by previous workers, 

26 Fluid Meoh. 37 
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showed up clearly in this test and appear flattened as shown in figure 10. The 
small separation bubble on the leading edge of the crest of the roughness element 
has been previously noted by Fox. 

Determination of Aulu, and E 

With a known value of skin-friction coefficient, the roughness function and the 
error in origin of the velocity profiles were determined using a modified Clauser 
plot as discussed in 3 2. 

Series DIZ-11 
station 4 0.9 

0.01 '0.05 0.10 0.5 1 
YT, (YT + E )  in. (log scale) 

FIGURE 11. Example of velocity profile reduction technique. 

5 

Near the wall (14) is valid and for K = 0-40 and A = 5-1-f can be written 

(22) 

where c;, is the local skin-friction coefficient. It is shown by Perry & Joubert 
(1963) that Au/u, is then given by 

where P is the value of u/U, given by (22) for yT = 1 in. To find B and Aulu, the 
raw velocity profiles were first plotted on axes u/U, versus log,, yT as shown in 
figure 11. The required slope of the final logarithmic distribution (5.76 J&$, by 
(22)) was then calculated using the value for the local skin-friction coefficient 
that had been previously determined by the pressure-tapped roughness element 

tions (22) and (23). 
t Perry & Joubert used K = 0.41, A = 4.9 giving slightly different constants in equn- 
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or momentum integral method. Values of E were then added to the abscissae of 
the raw profile in a trial-and-error process until avalue of €was obtained that gave 
a straight line of the required slope. In  general the final profile approximated 
closely to a straight line up to 0.10 to 0-15 of the boundary-layer thickness where 
the wake deviated from the logarithmic distribution. A complete set of final 
profiles are shown in figure 12. These final profiles show a slight deviation from 
the logarithmic distribution line for a thin layer near the origin of the profile. 
This is a consequence of the velocity probe being set up on the leading edge of 
a roughness element crest at the start of every velocity profile traverse. As the 
flow visualization tests indicated a small separation bubble in this region these 
first few points probably correspond to this separated flow. 

0.010 
y in. (log scale) (Scale is for Station 12) 

FIGURE 12. Typical set of h a 1  velocity profiles on a ‘ d ’  type rough wall in an adverse 
pressure gradient. Experimental points are left out for clarity in profiles of stations 6 to 12. 

With the position of the velocity profile fixed on the graph, the intercept of the 
straight line representing the logarithmic distribution and the yr = 1 in. ordinate 
gave P and hence Aulu, by (23). Experimental scatter within the velocity profile 
meant that there was usually a small range of positions on the graph for the final 
profile. In  addition the tolerance in setting up the origin of the velocity profile 
probe was significant and this widened the range of E particularly for cases with 
small E. 

Adverse pressure gradient results 
The skin-friction coefficient was determined by the drag-measurement technique 
for all three adverse pressure gradient runs. The values obtained decreased 
monotonically down the plate as illustrated in figure 9. 

The error in origin (e )  varied with 2 in each case. Two sets of results for strong 
adverse pressure gradients (Series DII-11 and DI-I)  are shown in figure 13. 

26-2 
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constant T O  layer 

z (ft.) 

FIGURE 13. Examples of the variation of E along the plate for zero and strong adverse 
pressure gradients. 0, D 111-I; 0, D I-I; m, D 11-II. 
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FIauRE 14. Roughness function ' d '  type roughness. 1-0-1, D 1-1 (strong adverse pres- 
sure gradient); \-@-I, D 1-11 (moderately strong adverse pressure gradient) ; I- 8 -1, 
D 1-111 (zero pressure gradient); 1-0-1, D 11-11 (strong adverse pressure gradient); 
I- -1, D 111-1 zero pressure gradient. Values of k for each series are given in table 1. 



Rough wall turblent boundary layers 405 

The values of c: near the trailing edge of the plate are in these cases greater than 
the height of the elements. This means that the flow in this region ‘feels’ an 
origin below the base of the roughness elements. 

20 

15 

. 3” 10 

d 

5 

0 
2 x  lo2 1 o3 

ku,/v (log scale) 

6 X  10’ 

FIGURE 15. Roughness function for ‘ d ’  type roughness plotted using Clauser’s (1954) 
parameters. 0, D I-I;  Q ,  D I - I I ;  Q, D I-III;  0,  D I I - I I ;  0, D III-I. 

Figure 14 shows the roughness function Aulu, plotted against log,, cu,/v. The 
results agree closely with 

which is the form given by the analysis in $ 3  (equation (17)). As the range of 
uncertainty in the values of E appears more pronounced on the logarithmic scale 
for small values of c:, the position of the theoretical line is verified more con- 
vincingly at  the large values of c:u,Iv. If these ‘ d ’  type results are plotted on axes 
Aulu, versw ku,/v (which were first used by Clauser (1954)) they give very large 
scatter with no apparent correlation as shown in figure 15. 

Zero pressure gradient results 

The skin friction coefficients for the test at  zero pressure gradient using the 
aluminium plate (k = Q in. nom.) were determined using the momentum integral 
equation. Figure 16 shows the momentum thickness of this boundary layer 
plotted against distance from the leading edge of the plate (x). The actual position 
used for the leading edge is shown in figure 3. After a short distance down the 
rough plate the experimental points give a good fit to a straight line. This implies 
a constant wall shear stress. 

The determination of 8, by the method previously described, gave ranges for 
its value that were proportionately larger than those obtained for the adverse 
pressure gradient cases. This was a consequence of the Clauser plot which was 
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FIGURE 16. Momentum thickness, variation along the pl&e for a zero pressure gradient 
boundary layer on a ‘ d ’ type rough wall. 
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FIGURE 17. Velocity profiles compared with Hama’s (1954) form of the velocity defect law. 
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found to be proportionately more accurate for large 6 than small E .  The velocity 
profiles were then compared with Hama’s (1954) equation for the velocity defect 
law (figure 17). For every profile the value of E to be added to y was chosen from 
within the range of values determined by the Clauser plot method that gave the 
best fit to Hama’s equation. These values of E were used for all subsequent 

rn * 2 1.5 2 . 0 ~ l  0 

10 
1 .o 

LIE 5 

5 (ft.) 

FIGTJRE 18. Form factor variation dong the plate. ‘ d ’  type roughness 
in a zero pressure gradient. 

results and are shown plotted against x in figure 13 (series DIII-I) .  A con- 
sequence of the work in § 3 in this type of boundary layer is that if s is proportional 
to the boundary-layer thickness then it should also be proportional to 2 with the 
same virtual origin as the constant wall shear stress layer. This virtual origin was 
determined from the straight line equation fitted to the values of the boundary- 
layer momentum thickness. With this origin a straight line was fitted to the 
values of E which is also shown on figure 13. Considering the small values of E the 
scatter of points around the line seems reasonable. Other consequencesof thework 
in 5 3 are, firstly, that the boundary-layer thicknesses 6,6*, 8, Ac are proportional 
to each other. Figure 18 shows that the form factor a*/€’ is approximately con- 
stant with distance down the plate. Secondly, the velocity profiles may be simply 
described by u/U, = @[y/2], where 1 can be either 6, a*, 0 or A, and $ is a universal 
function. The profiles are plotted on axes u/U, versus y/8 and compared with the 
Hama formulation of the velocity defect law expressed in terms of these variables 
in figure 19. 

The roughness function results correlate with both (20) (shown in figure 14) and 
an equation of the form given by (18). Figure 20 shows these results plotted on 
axes Au,/u versus A,u,/v where hwas used instead of 6 as it is more accurate since 
it is defined on integral basis. 

The results show a reasonably good fit with a straight line of slope 1 : 5-76 
(which is the theoretically predicted value) but there is an insufficient range of 
results to be conclusive. The equation to the line shown on the graph is 

For comparison the results are also shown plotted against the Clauser parameter 
ku,/u and in this case no correlation is apparent. 

The tests using timber elements in zero pressure gradient were largely unsuc- 
cessful as even with the crests locally aligned to within 0.003 in. the value of skin 
friction coeacient showed large scatter. The boundary layer was found to thicken 
more rapidly than the same layer on the aluminium plate as the elements were 
aligned accurately only in the neighbourhood of the measuring stations. The 

= 5*7610glo (Acu,/Y) - 16.9. 
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momentum thickness of this boundary layer therefore did not correspond with 
the measured skin friction coefficient because the outer flow had a history un- 
related to the measured local skin-friction coefficient. I n  spite of these facts the 
measured skin friction Coefficient for the pressure tapped timber elements had 
an average value of 4.11 x which compared favourably with the constant 
value of 4.36 x obtained from tests on the aluminium plate. Accordingly the 
inner (logarithmic) portions of the velocity profiles were reduced using a constant 
skin friction coefficient of 4-36 x 10-3. The results are plotted on figure 14 for 
completeness. These results must be regarded as uncertain. 

Y P  
FIGURE 19. Velocity profiles plotted in the form u/U, = @(y/O). 

' d '  type roughness in a zero pressure gradient. 

ACu,/v (log scale) 

FIGURE 20. Roughness function results for ' d '  type roughness in a zero pressure gradient 
plotted against both Au,/v and the Clauser (1954) parameter ku,/v. 0, AuIuT vermm AcuT/v; 
8 ,  Au/u, versus kuJv. 
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6. Checking the method 
The adverse pressure gradient results in this paper depend on the validity of 

the assumptions and method used to evaluate ‘the effective wall shear stress’. 
There are several points on which this simple analysis could be criticized. First, 
the streamlines close to the crests of the elements are most probably wavy as 
mentioned in $5. Also it is plausible that the shear stress, determined by the drag 
measurement technique, should be evaluated at  the local effective origin of the 
layer. This can be done by assuming a linear stress distribution 7 /p  = ~,,/p + xyT 
(where x is approximately equal to the kinematic pressure gradient l/p dp/dz) 
and extrapolating to yT = - E .  Shear stresses were calculated in this way but the 
values were extremely small and often negative. The shear stress evaluated at the 
crests of the elements that has been used in this paper relies heavily on experi- 
mental justification. Therefore, although the results presented so far appear 
consistent within themselves, further independent experimental checks were 
considered necessary. 

Every second element was removed from the plate fitted with the 1 in. timber 
elements giving a geometry with a nominal pitch to height ratio of 3.6 to 1. This 
represents a geometry only 10 yo different in h/k to that used by Moore (1951)’ 
Hama (1954) and Perry & Joubert (1963) and is thus a well-documented case of 
‘k’ type roughness. To obtain a large variation of the parameters Au/u, and 
kuJv the plate was set in a severe adverse pressure gradient. 

First, surface flow visualization tests were carried out as before and sketches 
of the resulting patterns are shown in figure 21. Again no significant changes in 
the patterns were discerned over the complete length of the plate. The flow 
around the roughness geometry implied from these patterns is also shown in 
figure 2 1 and it is firstly noted that there is no evidence of a stagnation streamline 
on the leading face of the cavity. The flow in this region seems to divide about a 
streamline near the front of the crest of the element although this was not shown 
conclusively by the streaklines. The flow around this roughness geometry is 
markedly different to the ‘d ’  type case in that the flow structure is not confined 
to the cavity. Other differences are, firstly, the absence of a separation bubble on 
the leading edge of the crest and secondly the existence of a pocket of nearly 
stagnant fluid near the trailing face of the cavity. The relative surface velocities 
appear to be of approximately the same orders as in the ‘ d ’  type case. 

The roughness function was then evaluated for this case of ‘ k’ type roughness 
in a strong adverse pressure gradient using the methods discussed previously. 
The first four stations on the plate did not yield a solution by the Clauser plot 
technique as there were insufficient experimental points or none at  all falling on 
the logarithmic straight line. This was due to the fact that the error in origin wa,s 
large compared with the boundary-layer thickness, implying that the majority 
of the logarithmic velocity distribution would have existed below the crests of 
the elements. Even if a solution was possible using another technique the results 
would be suspect as the simple Nikuradse model of the roughness effect being 
confined to a thin wall layer would not be valid. The error in origin ( E )  was found 
to have an average value of 0.75k which agrees closely with the data of Perry & 
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Joubert (1963) and Moore (1951) (who gave approximately 0.7k). Some change in 
the proportion of k representing e was to be expected as the roughness geometry 
was not identical to the previous studies ; however, the spread in the values of 
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FIGURE 21. Surface flow patterns around ‘k’ type roughness geometry. 

of Perry & Jouberr (1963) 

ld 1 o4 
kuJv (log scale) 

FIGURE 22. Roughness function. ‘k’ type roughness. 

was larger than expected. Figure 22 shows the roughness function plotted against 
log,, (ku,/v).  For comparison the results of Perry & Joubert are shown as well as 
the line of best fit to the data of Moore. The present results show fair agreement 
with a line ofthe correct slope (1 : 5-76) ; however, the intercept at  log,, (ku,/v) = 0 
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has a value of approximately + 1.2, whereas Perry & Joubert found a value of 
- 0.2. Variation in this constant can also be ascribed to the change in roughness 
geometry, but it is difficult to estimate what the order and even the direction of 
the variation should be. Work has been done using two-dimensional roughness 
elements at different spacings by Schlichting (1936), Betterman (1966) and Liu 
et al. (1966). However, the changes in spacing used in all these studies have been 
very large and results showed contradictory trends. Interpolation of these results 

0.10 I I I I I I I I I 1 
.. 

< >  

0.09 

0.08 

0.07 
h 

s 
006 

0.05 

0.04 

003 
4 5 

I KO 7 .A difference 

/ in slopes 1 

10 

x (ft.) 

15 18 

FIGURE 23. Momentum thickness variation along the plate. ‘k’ type roughness in a zero 
pressure gradient boundary layer. 0, experimental values of 8; 0 ,  experimental values 
of 8 and positions of drag measurement ; . -. - . -, local slope of 8 v e r m  x by drag 
measurement ; - , faired-in curve of 8 versus x. 

was considered very unreliable. It was unfortunate that the ‘ k’ type roughness 
geometry used by previous workers could not be used here. However, as explained 
earlier it was necessary to choose a ‘ d ’  type roughness geometry which would 
avoid three-dimensional cellular flow in the cavities as reported by M a d  & East 
(1963) and Kistler & Tan (1967). Therefore this means of checking the method of 
determining skin friction and roughness function while encouraging was not con- 
clusive. 

In  a zero pressure gradient it was found that, for this roughness geometry, 
changes in the measured drag on an element due to vertical height misalignment 
were undetectable for a misalignment of 0.020 in. This was probably due to the 
‘ k ’ type flow patterns being basically different to the ‘ d ’ type case as observed in 
the surface flow visualization tests. 

As a second check the wall shear determined by drag measurement, a t  two 
stations, was compared with the momentum balance of the mean velocity profiles 
in a zero pressure gradient. The results are shown in figure 23. As the momentum 
balancemethod involvesgraphical differentiationof a faked-in graph an accuracy 
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of the order of 10 % could be expected. The agreement obtained between the two 
methods was 7 and 12 yo for the two stations and hence the two methods were 
considered to show satisfactory agreement. 

Value of viscosity adopted 

The value used for the viscosity of the fluid is arbitrary as variation in the 
viscosity simply shifts the points parallel to the mean line in figures 14’20 and 22. 
The value adopted in this paper was 1.56 x 10-4ft.2/sec.~ 

7. Conclusions 
(i) It appears that two major types of roughness can be distinguished, referred 

to here as ‘ k ’  and ‘ d ’  type. ‘ k ’  type roughness follows the Nikuradse-Clauser 
correlation scheme. ‘ d ’  type roughness typified by depressions or narrow lateral 
grooves in the wall, does not follow this correlation scheme. (ii) For fully rough 
flow the roughness function for both ‘ k ’  and ‘ d ’  type roughness is a function of 
the length of scale E .  The relationship can be expressed 

Au - = -log, 1 
u, K 

(T) % +c, 
where E is that distance below the crests of the elements that the effective wall of 
the boundary layer must be situated in order to give the usual logarithmic distri- 
bution of velocity and C is a constant that is characteristic of the roughness. 

For flow over a ‘ k ’  type rough wall E is proportional to the scale ( k )  of the 
roughness. 

For flow over a ‘ d ’  type rough wall e is not proportional to k .  However, the 
validity of the above equation implies that in this type of flow there is a constant 
surface-drag coefficient which is independent of the flow situation as in the cases 
of k type rough wall and smooth wall flow. (iii) For the general case of ‘ d ’  type 
rough-wall flow no way of predicting E is known. However, for the case of pipe 
flow e appears to be proportional to the pipe diameter and results reported here 
show that for zero pressure gradient boundary layers, E is probably proportional 
to the boundary-layer thickness. One possible explanation for this is that the 
large-scale inactive components of the turbulence structure play a major role in 
determining the flow at the boundary. (iv) A zero pressure gradient boundary 
layer developing on a ‘ d ’  type rough wall has a constant wall shear stress and 
conforms to Rotta’s condition of precise self-preserving flow. However, the tests 
reported here have a limited range and therefore cannot be conclusive. (v) Skin- 
friction coefficients determined by the pressure-tapped roughness element 
technique gave results that were self consistent and agreed with the momentum 
integral method for ‘k’ type roughness in zero pressure gradient. 

The authors are indebted to the Australian Institute of Nuclear Science and 
Engineering and to the United States Navy for financial support of this project. 

t Tabulated results of E,  P, Au/ur, EU,/V or ku,/v, C,, cia, Coo, and detailed results may 
be obtained from the authors. 
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